skip to Main Content

Shear capacity of steel fibre reinforced concrete beams

My student Belkis Filian recently traveled to Poland to present her research at the fib symposium in Krakow.
The title of her work was: “Shear capacity of steel fibre reinforced concrete beams”. We also worked with my TU Delft colleague Yuguang Yang for this paper, and looked at a simple way to incorporate the effect of steel fibers in the critical shear displacement theory (disclaimer: the crack kinematics are so complex that “simple” methods unfortunately are only very coarse approximations)

Here’s the abstract:
The Critical Shear Displacement Theory (CSDT) was developed to determine the shear capacity of reinforced concrete beams based on the different shear-carrying mechanisms (concrete in the compression zone, aggregate interlock, and dowel action). This research aims at extending the CSDT to Steel Fibre Reinforced Concrete (SFRC) by adding the contribution of steel fibres. The model extension was developed based on formulations for the contribution of steel fibres to the shear capacity from the literature. With this extension to the CSDT, the shear strength of steel fibre reinforced concrete beams without stirrups could be estimated. An extensive database is developed from the literature in order to evaluate, compare, and analyse the shear capacity of SFRC beams. The analysis indicates that two models are capable of predicting the shear strength of SFRC beams with reasonable accuracy. The mean, standard deviation, and coefficient of variation are 0.9, 0.28, 0.31 and 1.1, 0.33 and 0.30 respectively. The main geometric variables of the steel fibres that influenced the shear strength are the length, diameter, and fibre type (hooked, crimped, and straight). From the comparison between the results in the database and the proposed extensions to the CSDT it is found that the critical shear displacement of Δcr = 0.025 mm, gives reasonable results for SFRC. As such, this proposed method can be used to estimate the shear strength of SDRC based on a mechanical model.

Feel free to write me if you want a copy of the paper!

Share with your peers!
This Post Has 0 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Back To Top

Free Templates for your Research

Sign up here to get access to worksheets for your research that help you have more efficient meetings, reflect on your work, and plan your month. Suitable for anyone from Master’s thesis students to full professors!